
John Valance

JValance Consulting

johnv@jvalance.com

Copyright © 2011-2012: John Valance

� Independent consultant

o Specialty is helping iSeries shops develop web applications, and
related skills

o Training, mentoring, consultation and coding

� 25+ years iSeries/AS400 experience

� 12+ years of web development experience

o Web scripting language of choice = PHP

� Frequent presenter on web development topics

� Trainer for Zend Technologies

o Teaches Intro to PHP for RPG programmers

� Cover tips and techniques useful to
development of business applications in PHP on
System i

� Topics:

o Database paging

o File system processing / Writing CSV Content

o Email

o Session management / Cookies

� You understand

o Basic PHP syntax

o Basics of web application coding in PHP

o Have done some basic DB2 applications with PHP

� You are ready to go a little deeper

o Pick up a few ideas and “how-to” tips

��

� Large Result Sets

o Don’t load all records on screen at once

o Show subset page by page

• i.e. 20 to 50 records per page

� Similar to Subfile

o But techniques very different, due to HTTP

� Need mechanism / algorithm to allow user-controlled
page access

� Need to use a scrollable cursor

o Option on db2_prepare(): 'cursor' => DB2_SCROLLABLE

o This allows us to read a specific row number in result set

o High performance record-level access

� Compute starting row number to retrieve as:

$rowNum = (PAGE_SIZE * $pageNum) - PAGE_SIZE + 1;

� Retrieve $pageNum from HTML form field

o If not present, default to page 1

� Add buttons on screen for Next, Previous

o These will request $page+1, $page-1

� On first page, disable the “Previous” button

if ($pageNum == 1) $prevState = "disabled";

� On last page, disable the “Next” button

� After loading page, try to retrieve next record

� If no more, disable the “Next” button

if (!$row = db2_fetch_assoc($stmt, $rowNum))

$nextState = "disabled";

� In HTML, echo $nextState and $prevState within the
button tags

� Show Page X of Y

� Add buttons for “First Page”, “Last Page”

� First Page button is easy…

o Just request page = 1 when button clicked

o Disable the button if current page=1

• Can use $prevState we calculated earlier

� For X of Y, and last page, we need to know how many

pages there are in query result

o Note: Disable the last page button if currently on last page

• Can use $nextState we calculated earlier

� We need to know how many pages there are in query result

� We need to do a separate SELECT to count number of rows in result

SELECT COUNT(*) as ROW_COUNT

FROM <same table> JOIN <same joins>

WHERE <same conditions>

� We can then calculate total pages as:

$numberOfPages =

ceil((int)$row['ROW_COUNT'] / PAGE_SIZE);

� Use ceil() function to round page number up.

��

� By file, we mean IFS files, not object type *FILE.

o E.g., text files, PDF, images, Excel, CSV

� PHP core includes numerous file system functions

o http://us2.php.net/manual/en/ref.filesystem.php

� Two types of file functions:

o File name-based

• Dealing with the file as a whole

• Receive a file name as parameter

o Resource-based

• Open a file to read/write portions of the file’s contents

• Receive a file “handle” resource as input

� Some File Name-based Functions

o bool file_exists ($filename)

o string file_get_contents ($filename)
• file_get_contents can use a URL as $filename

• If it contains special characters, encode it with urlencode()

o int file_put_contents ($filename , $data)

o int file_size ($filename)

o bool copy ($source , $dest)

o bool unlink ($filename)

� If no path specified, file is searched for in same folder as
php script

o Some functions allow option to use include_path to search for
files

� First, open the file using fopen() function

o fopen() returns a file-handle resource

$fh = fopen(‘myfile.txt’, ‘a+’);

� Use resource returned by fopen() to call functions to
read and write data

$text = fread($fh, file_size(‘myfile.txt’));

fwrite($fh, “some new text\n”);

� Lastly, close the file resource using fclose()

fclose($fh);

� resource fopen (string $filename , string $mode)

o $mode is open mode for file processing:

• See table on next slide for fopen mode options

� Some resource-based functions

o string fread (resource $handle , int $length)

o int fwrite (resource $handle , string $string [, int $length])

o int fseek (resource $handle , int $offset [, int $whence])

o bool feof (resource $handle)

o bool fclose (resource $handle)

Mode Function Read Write Pointer Overwrite Create

r open Yes No begin No No

r+ open Yes Yes begin No No

w open No Yes begin Yes Yes

w+ open Yes Yes begin Yes Yes

a open No Yes end No Yes

a+ open Yes Yes end No Yes

x create No Yes begin No No

x+ create Yes Yes begin No No

c open/create No Yes begin No Yes

c+ open/create Yes Yes begin No Yes

b binary file Specify b along with above mode flags if binary file

� PHP has built-in CSV handling functions
o Resource-based functions – need to use fopen() to get $handle

� int fputcsv (resource $handle , array $fields)
o Parses the array $fields into a comma-separated string
o Write the string to the end of the file denoted by $handle

• Strings automatically quoted if contain blanks or commas
• Includes newline at end of CSV string

o Returns number of bytes written

� array fgetcsv (resource $handle)
o Reads one line from $handle
o Parses CSV content and returns an array containing an element for

each value in the CSV string
o Advances the file pointer to next line for looping

� Easy to create a CSV file from an SQL query

� Use db2_fetch_array()

o Returns an array of field values based on an SQL query

� Pass returned array to fputcsv()

$conn = db2_connect ("*LOCAL", "USER", "PSWD");

$stmt = db2_prepare($conn, "SELECT * FROM MYTABLE");

db2_execute($stmt);

$fh = fopen('mytable.csv', 'w');

while ($row = db2_fetch_array($stmt)) {

fputcsv($fh, $row);

}

fclose($fh);

db2_close($conn);

� Use db2_num_fields() and db2_field_name() functions

� Add the following before reading/writing data rows:
for ($col = 0; $col < db2_num_fields($stmt); $col++)

$headings[] = db2_field_name($stmt, $col);

fputcsv($handle, $headings); // first line of CSV file

� If cryptic DDS field names, use ‘AS’ in SELECT

o SELECT CSCNUM as “Customer Number”,

CSNAME as “Customer Name”

� Instead of writing to IFS, send it to user

o User will get a “File open/save” dialog

� We can access the PHP output stream as a file resource

o php://output – Use this as filename in fopen()

o Specify mode = ‘w’ (write)

$handle = fopen("php://output", 'w');

� Need to do two other things:

o Buffer output
• Want to deliver the file all at once

o Specify content type and file name
• Use header() function to set values in HTTP headers sent to browser

ob_start(); // start output buffering

// set file type and name in HTTP header

header("Content-type: application/csv;");

header('Content-Disposition: attachment;

filename="membership.csv"');

... do db2 query execute

$handle = fopen("php://output", 'w');

... write content to $handle as before

... after db2_close() and fclose():

// Flush output buffer - send entire file to browser

ob_end_flush();

��

� PHP mail() function

o Built-in to PHP core

o Simple, easy to use

o Best suited for text-only messages

bool mail (string $to , string $subject , string $message [, string $headers])

Example:

$to = 'customer@gmail.com';

$subject = 'Test Email';

$message = 'Testing 1,2,3';

$headers = "From: custserv@ourcompany.com\r\n" .

"Reply-To: custserv@ourcompany.com\r\n";

mail($to, $subject, $message, $headers);

� SMTP server/port is set in php.ini

� Underlying protocols are complex

o based on RFC822

� Can be done with mail() function, but not easy

o Requires understanding MIME formats
• MIME = Multipurpose Internet Mail Extensions

• http://en.wikipedia.org/wiki/MIME

� Best to use a package that makes it simple

o PEAR::Mail_Mime
• http://pear.php.net/package/Mail_Mime

o Zend Framework: Zend_Mail class
• http://framework.zend.com/manual/1.11/en/zend.mail.html

• Zend Framework included with Zend Server (even CE)

• Very simple interface

• Great integration with other Zend products

� To use Zend Framework classes in your code, add these two
lines at top of your script:
require_once 'Zend/Loader/Autoloader.php';

Zend_Loader_Autoloader::getInstance();

Note: path to Zend Framework library folder is already set in your include path by ZS installation

� Example – sending plain text message:
$mail = new Zend_Mail();

$mail->setFrom('jvalance@sprynet.com', 'Our Company');

$mail->addTo('jvalance@sprynet.com', 'J. Valance');

$mail->addTo('john.valance@gmail.com', 'John V.');

$mail->setSubject('Test Order Confirm');

$mail->setBodyText('This is to confirm your recent order...');

$mail->send();

$pdf = file_get_contents('some_pdf_file.pdf');

$attach = $mail->createAttachment(

$pdf,

'application/pdf',

Zend_Mime::DISPOSITION_ATTACHMENT,

Zend_Mime::ENCODING_BASE64

);

$attach->filename = 'brochure.pdf';

� Note: application/pdf = Content-type

o Tells email client what program to open attachment with
o Other examples:

• application/csv (Excel most likely)
• img/jpg

� Use $mail->setBodyHtml(‘…html content…’)

� Should also setBodyText(‘…text content…’) for
recipients that only receive text

� HTML emails can be tricky…
o Some email clients don’t handle them well / the same

• Web-based clients
• PDAs / Smart-phones

o A lot of companies stick to plain text notification emails
o Rules of thumb for successful HTML emails:

• Use <table>s for layout (vs. CSS positioning etc.)
• Specify CSS attributes inline, vs, style sheet

• i.e. - as <tag style=“…”> attribute, no matter how redundant

o Images in HTML:
• better to use external file references for images (vs. image attachments)
• i.e.

��

� HTTP protocol is stateless
o There is no continuous connection to server
o Each request/response is completely independent of the next

� Web applications need a mechanism to simulate a user
session

� PHP makes this easy with session functions and session
variables

� Session variables are stored on the server by PHP
o Session variables are keyed by a session ID
o Session variables are accessed via the $_SESSION array

� Session ID is stored in a cookie on the client
o This is triggered by PHP’s session_start() function
o Cookies are automatically sent with request by browser

� Login Script:

session_start(); // must happen before any output

… validate user/pswd

$_SESSION['userid'] = $_POST['userid'];

… other processing

� Application scripts include this at top:

session_start();

if (! isset($_SESSION['userid'])

header('Location: login.php'); // redirect to login

exit; // always exit after redirect

else

echo “Hello “ . $_SESSION['userid'];

� Logout:

session_start();

session_destroy();

setcookie(session_name(),'',0,'/'); // expire cookie

header('Location: login.php'); // redirect to login

exit; // always exit after redirect

Session variables persist until one of these happens:

� session_destroy() is called

� browser windows are all closed

� session cookie times out

o based on session.cookie_lifetime in php.ini

o this is unreliable – better to code your own session timeout logic

� session garbage collection takes place

o based on session.gc_maxlifetime in php.ini

� Session timeout logic

if (isset($_SESSION['LAST_ACTIVITY'])

&& (time() - $_SESSION['LAST_ACTIVITY'] > 1800)) {

// last request was more than 30 minutes ago

session_destroy(); // destroy session data

session_unset(); // unset $_SESSION vars

// expire cookie

setcookie(session_name(),'',0,'/');

} else {

// update last activity time stamp

$_SESSION['LAST_ACTIVITY'] = time();

}

� To persist user information beyond a session, set a
cookie

setcookie(

'mycookie', // name

‘Oreo’, // value

time()+(60*60*24*30), // expire in 30 days

);

� Must call setcookie() before any browser output

o because cookies are set via response headers

� Retrieve value via $_COOKIES array:
$cookieValue = $_COOKIES[‘mycookie’]; // ‘Oreo’

��

� Database paging

o Scrollable cursor

o Specify starting row on db2_fetch

� File system processing / Writing CSV Content

o File-based functions vs. Resource-based functions

o fputcsv() and fgetcsv()

o $download = fopen("php://output", 'w');

• Use buffering

• Specifying file name and type with header() function

� Email

o mail() – simple emails without attachments

o Zend_Mail – attachments / HTML

� Session management / Cookies

o HTTP = stateless protocol

o session_start() / session_destroy()

o $_SESSION array

o setcookie() – persist information beyond session

� John Valance

o JValance Consulting

o jvalance@sprynet.com

o 802-355-4024

� Contact me for source code

